

OTEG[®] 傲腾

MAP08A(D4) MAP16/16A(D4)

通用说明书 V2.0

第2页共69页

7.12 输出限幅器
7.13 输出模块
7.14 输入通道
7.15 输出通道
7.16 通道联调
7.17 设备列表
7.18 添加设备
7.19 设备管理
7.20 通道名称管理
7.21 通道拷贝
7.22 存档
7.23 固件升级
第8章 摄像跟踪
8.1 摄像机连接设置
8.2 摄像机设置
第9章 GPIO及中控指令40
第10章 故障排除
第11章 Dante Controller 操作

第1章 简介

此设备是一款16进16出的自动混音媒体矩阵,配备16路模拟输入和16路模拟输出,内置反馈抑制, 自动混音,矩阵混音,均衡器,分配器,压缩器等DSP功能,此设备支持Dante网络音频功能扩展,通 过USB免驱连接电脑软件控制,RS232,RS485,TCP/IP连接中控远程控制,适合用在各种场合的扩音工程。

应用场合

会议室 中大型会议室 公检法场合 礼堂 多功能厅

功能特点

- ▲16路模拟音频输入16路模拟音频输出,支持麦克风输入和线路输入自由切换
- ▲每路输入带48V幻像电源开关
- ▲每路输入带反馈抑制功能开关,两档调节
- ▲带自动混音和矩阵混音功能
- ▲输入16段PEQ可调,输出10段PEQ可调
- ▲TCPIP,USB免驱自动连接软件,另外支持RS232、RS485中控控制
- ▲Dante功能选配

第2章 技术参数

DSP芯片	
信号处理	32-bit fixed/floating-point DSP 300MHz
音频系统延迟	< 1ms
数模转换	24-bit
采样率	48KHz

模拟音频输入输出 AN	IALOG AUDIO INPUTS AND OUTPUTS
输入通道	16 路平衡输入. Mic/line level
音频接口	3.81 mm 凤凰插, 12-pin
输入阻抗	11.5ΚΩ
最大输入电平	12dBu/Line, -7dBu/Mic
幻象电源	+48VDC, 6.5mA, 每通道配置
输出通道	16 路平衡输出, line level
输出阻抗	150Ω

音频指标	AUDIO P								
频响曲线		20Hz-20kHz(+-0.5dB)/Line							
		20Hz-20kHz(+-1.5dB)/Mic, 20dB增益							
THD+N		-90dB(@12dBu,1kHz,A-wt)/Line							

第4页共69页

	-86dB(@-7dBu,1kHz,A-wt)/Mic, 20dB增益
信噪比	105dB(@12dBu,1kHz,A-wt)/Line
	95dB(@-7dBu,1kHz,A-wt)/Mic, 20dB增益

连接和显示 COMM						
USB	Micro-B type, 免驱					
RS232						
TCP/IP网口	RJ-45					
指示灯	Power, Link, +48V,输入输出音频信号					

电气与物理参数 ELECT	RICAL AND PHYSICAL
供电范围	AC100V240V 50/60 Hz
尺寸 (长*宽*高)	483mm*265mm*44.5mm
净重	3.3kg
工作温度	-20°C80°C

第3章 功能结构

前面板

第5页共69页

第4章 上位机软件简介

设备管理软件是为用户对一台或多台机器的各参数进行快速交互的软件,可将机器各配置参数储 存到磁盘文件中,为进行多台机器或不同使用场所的预置场景配置及参数的切换与还原提供了十分方便 的手段。

第5章 软件安装

5.1 运行环境

软件适用于WIN7/WIN8/WIN10 任意x86/x64的Windows且带有Microsoft .NET Framework 4.0运 行库的操作系统。 本软件为绿色版,绿色版的软件无需安装主程序,文件夹内包含如下文件或文件夹,缺一不可。绿色版的软件不包含Microsoft .NET Framework 4.0运行库,如有需要,请到微软官方网站下载安装。

图2-1绿色版文件

5.3 软件运行

操作步骤:双击文件夹上的可执行文件 Mconsole ,进入软件主题界面如图1.1所示

图1.1 软件主题界面

第8页共69页

第6章 软件界面说明

图2.1 软件主体界面

6.1 界面模块介绍

如图2.1软件主体界面中红色字对应位置的模块, 各模块如下:

- (1) 菜单栏
- (2) 扫描按钮
- (3) 设置按钮
- (4) 联调按钮
- (5) 设备列表
- (6) 本机IP地址
- (7) 模块按钮
- (8) 模块功能界面
- (9) 输入输出通道列表

文件

图2.2"文件"菜单

如上图2.2"文件"菜单:

- 1. 新建, 软件在未连接设备时可在此菜单建立每一款设备的模型。
- 2. 新增设备,增加模拟设备,模拟设备不会对现有设备有影响。
- 3. 打开,从电脑磁盘上打开一个已有设备管理工程。
- 4. 保存,将当前设备管理工程保存于电脑磁盘中。
- 5. 另存为,将当前设备管理工程另存为一份文件。

设备

图2.3"设备"菜单

第10页共69页

如上图2.3"设备"菜单:

- 1. 设备管理, 查看或修改设备上下位机软件信息、设备名称及设备IP地址等。
- 2. 通道管理,设置每个输入输出通道的名称。
- 3. 通道拷贝, 拷贝相同类型通道的参数。

摄像头

最像机设置							
预置点控制	串口號	232	2 🔻		0.60	变倍故大	变倍缩小
预 置 点 1	• 摄像机地	助止 1	-			Science	JACINE IN J
	协议	PEI	.CO-D 🔻			调焦-近	调焦-远
调用保存清除。	云台转速	± 10	+			光圈-大	光圈-小
摄像机跟踪			麦克风跟踪设置	置			
摄像机跟踪 默认麦克风 0			麦克风跟踪设 摄像机跟踪	置	串口	號	
摄像机跟踪 默认麦克风 0	•	-32.00	麦克风跟踪设置 摄像机跟踪 麦克风编号	置 启用 1	■日	號 [机地址 [
摄像机跟踪 默认麦克风 0 跟踪阈值(dBu) 语音问隙(s) ●		-32.00 0.10	麦克风跟踪设计 摄像机跟踪 麦克风编号 优先级	置 启用 1	 申□ 損像 小 协议 	號 [机地址 [
摄像机跟踪 默认麦克风	* •	-32.00 0.10 0.00	麦克风跟踪设 摄像机跟踪 麦克风编号 优先级	置 月用 1	 申□ 損傷 小 小 が が 	號 [机地址 [: [

图2.4摄像头界面

1. 点击菜单栏中"摄像头",即弹出如上图2.4摄像头界面,用于查看及设置摄像头功能的各个参数

连接

图2.5"连接"菜单

第 11 页 共 69 页

如上图2.5"连接"菜单:

1.连接端口,设置连接方式及端口号及波特率。

- 2.连接设备,连接并下载设备参数。
- 3.断开设备,断开已连接的设备。
- 4.连接所有设备,连接并下载设备列表中所有设备的设备参数。

5.断开所有设备,断开设备列表中所有已连接的设备。

存档

机器设备存档操作

- 1. 保存,选择保存的档位,将机器当前的所有参数保存到机器存档
- 2. 调用,将机器存档中已有的存档调用
- 3. 删除, 删除已有存档, 默认档不能删除和覆盖
- 4. 清除, 删除机器里所有的存档
- 5. 设为开机档,选择某存档,设为开机档后,每次机器通电开机,自动调用该存档参数
- 6. 导入存档,将电脑单个存档文件导入
- 7. 导出存档,将当前状态所有的参数导出到电脑中,生成单个存档文件
- 8. 导入存档包,将电脑多个存档包文件导入
- 9. 导出存档包,将机器存档内多个存档,打包成一个存档包导出到电脑中,生成存档包文件

图2.6"系统"菜单

如上图2.6"系统"菜单:

1.Language, 多语言切换。

2.关于,对当前上位机及设备版本信息。

3.固件升级,对设备的固件进行升级。

6.1.2 扫描按钮

如下图2.7进度显示框,点击"扫描"按钮后直接扫描当前设置的连接模式的所有设备,并显示扫描进度

图2.7进度显示框

6.1.3 设置按钮

设置扫描设备的连接模式,点击"设置"按钮,即会弹出如下图2.8端口连接界面,选中对应的模式, 设置对应的参数后确认即可,若设备端口有变动,可点击左下角的"刷新"按钮即时更新端口列表。

口连接		
COM	USB TCP	
詣	COM1	•
波特率	115200 bps	+
刷新	确定	取消

图2.8端口连接界面

第 13 页 共 69 页

同时进行多个设备参数设置的功能,点击"联调"按钮,即会弹出如下图2.9组网联调界面,左边框选择需要同时设置的设备,移动到中间框的组合分组中,再选择最右侧的分组设置参数,最后按下"确定" 按钮则分组功能生效,也可以用相同操作更正组网分组设置。

图2.9组网联调界面

6.1.5 设备列表

第 14 页 共 69 页

当软件扫描到或手动新增模拟设备时,自动回将对应的设备添加到设备列表中,方便用户对所需要的设备进行交互操作,及方便同时操作多台设备。

6.1.6 本机IP地址

当软件打开时,则会自动获取当前电脑系统已生效的网络适配器对应网络连接的IP地址,方便管理设备IP地址。

6.1.7 功能模块控键

为方便对设备不同参数进行交互,软件按功能顺序分为多个模块,用户若要对相应的模块进行操作,则可用此模块控键打开、关闭、定位模块界面,双击为打开/关闭,单击为定位。

6.1.8 功能模块界面

第15页共69页

各功能模块通过控键打开关闭,显示功能页面和详细参数,可以进行详细设置,自由对单个或多 个功能进行操作。可以左右拖动切换不同功能页面。

6.1.9 输入输出通道列表

可显示出各通道电平、增益、输入模式、通道名称等信息,控制对应通道增益、DSP功能总开关,可以打开输入输出通道分组联调功能,实现更强大的操作便利性。

第7章 功能界面介绍

7.1 输入模块主界面 (选配Dante)

弹出下图3.1通道输入模块。

图3.1通道输入模块

第 16 页 共 69 页

如图所示,可对对应输入通道中的极性、静音、输入模式进行操作;

输入模式中,模拟输入、数字输入、测试信号为三选一,一个通道只能有一种输入模式。Dante和测试 信号为每两通道一起切换。

模拟输入分为Line、Mic输入,其中Mic输入可设置是否打开48V幻象电源(NONE/48V),及Mic 输入的灵敏度(0~40dB)。

此软件中Dante数字输入只支持CHA-CHD四个通道,其他输入通道不支持Dante输入,Dante按 钮会变为不可用状态^{20ante⁻。}

7.2 测试信号功能

上图3.1中, 点击"测试信号"右侧的"设置"按钮弹出下图3.2测试信号界面。

	正弦波		粉	江噪声		白噪声				
増益 频率	-15.00 c		増益 	-15.00 dB		-15.00	dB			
			In D	In F	In F	In G	In H			
In A	In B	Inc								
In A 謝信号 🔸	In B 模拟信号 •	模拟信号	▼ 模拟信号 ▼	模拟信号 ▼	模拟信号 ▼	模拟信号 ▼	模拟信号			
In A 謝信号 ・ In I	In B 模拟信号 🔹 In J	In C 模拟信号 In K	◆ 模拟信号 ◆ In L	模拟信号 ▼ In M	模拟信号 ▼ In N	構設信号 ▼ In O	模拟信号 In P			

图3.2测试信号设置界面

如上图,分为上半部分的测试信号产生设置选项及下半部分的通道测试信号选项。

测试信号产生设置中,三种测试信号都可设置生成对应测试信号的增益值,每种测试信号右侧的 开关按钮可控制测试信号是否生效,绿色为开启,红色为关闭,另外正弦波可设置频率。

通道测试信号设置为每两个通道一起切换,测试信号可选"正弦波""粉红噪音""白噪声",若选为模拟 信号,则会切换回模拟信号输入。

7.3 输入反馈抑制(AFC),回声消除(AEC),噪声消除(ANC)

弹出下图4.1输入反馈增益模块。

第 17 页 共 69 页

				AFC/AEC,	ANC/	A-In	A							X	
AFC			A	EC					ANC						
	自动	混音	回声等级	0 -	噪声	等级	0	•	自	动混音	噪声	等级	0	•	
	本地信号		远稽	信号		輸	出			输入		輸	出		
	А	I	Α	I	1	$\overline{\}$	9	1	A	I	1	/	9	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
	В	J	В	J	2	/	10	/	В	J	2	/	10	/	
	С	к	С	к	3	1	11	1	С	к	3	1	11	1	
举闭	D	L	D	L	4	/	12	/	D	L	4	/	12	\mathbf{i}	
25%	E	м	E	м	5	1	13	1	E	м	5	1	13	/	
等级 1	F	N	F	N	6	/	14	/	F	N	6	/	14	/	
等级 2	G	0	G	0	7	1	15	/	G	0	7	1	15	/	
	Н	Р	н	P	8	1	16	1	н	Р	8	/	16	/	

图4.1输入反馈增益模块

如上图,通道输入信号的反馈增益功能设为三选一,关闭、等级1、等级2,选择等级1、等级2时,则会自动切换到对应等级并即刻生效。

AEC (回声消除)

AEC原理图

图中近端人声传到远端,由于空间的反射,形成回声重新从麦克风输入,同时叠加了远端人声。此时进过AEC(回声消除)处理,可以抵消近端扩音人声,让近端只能听到远端的声音。

		A	EC		
	自动混音	回声等级	0 -] 噪声等级	0 •
	本地信号	远程	信号	输	Ъ
А	Ι	A	Ι		9 \
В	L	В	J	2	10 \
С	к	С	К	3	11 \
D	L	D	L	4	12 🔪
E	м	E	м	5 \	13 🔪
F	N	F	N	6 🔪	14 🔪
G	0	G	0	7	15 \
н	Р	н	Р	8 \	16 🔪

1、自动混音:开启时,自动混音信号输入到AEC本地信号。

第 18 页 共 69 页

- 2、回声等级: 0~6, 0为关闭, 6为最高。
- 3、噪声等级: 0~4, 0为关闭, 4为最高。
- 4、本地信号:本地麦克风输入的信号。
- 5、远程信号:远端麦克风传输过来的信号。
- 6、输出:经过AEC处理后的输出。

		A	EC		
自道	动混音	回声等级	4	• 噪声等级	2 •
本	也信号	远程	信号	斩	出
A 🔮	Ι	A	I	1 👖	9
В	L	в 🛃	J	2	10
C	κ	С	К	3	11
D	L	D	L	4	12
E	м	E	М	5	13
F	N	F	N	6	14
G	0	G	0	7	15
н	P	н	P	8	16

AEC (回声消除) 处理是需要有参考对比的信号,也就是视频会议中对方传过来的信号,我们称之为远程信号。

上图本地麦克风从设备的INA输入,远端信号从INB输入,AEC处理加ANC降噪后从设备OUT1输出,

ANC (噪声消除)

		ANC	
	自动混音	噪声等级	0 •
	输入	輸	出
A	Ι		9 \
В	J	2	10 🔪
c	κ	3 \	11 🔪
D	L	4	12 \
E	м	5 \	13 🔪
F	N	6 🔪	14 🔪
G	0	7 \	15 🔪
н	P	8	16

1、自动混音:开启时,自动混音信号输入到ANC本地信号。

第 19 页 共 69 页

2、噪声等级;0~4,0为关闭,4为最高。

- 3、输入:麦克风输入
- 4、输出:进ANC处理输出

7.4 输入噪声门

图6.1输入均衡器设置模块

7.5.1 功能按钮

如上图6.1所示,顶部按钮功能分别为: 相位曲线:显示当前通道的相位曲线。 显示控点:显示或隐藏所有均衡控制点。 全旁通:同时开启或关闭当前通道的所有均衡器EQ EQ存档:将当前的均衡器设置参数保存到电脑中,和调取覆盖现有的均衡器参数。 复制:复制当前均衡器参数值,可粘贴到其它输入通道中。 粘贴:与复制按钮组合使用,可粘贴复制功能所复制的均衡器参数值到当前通道中。 重置:重置均衡器参数为默认参数值。

7.5.2 多通道EQ曲线显示

第 21 页 共 69 页

如上图6.1所示, 左侧为每个通道的EQ曲线显示开关, 打开后即会在EQ曲线图表中画出对应通道的曲线。

7.5.3 EQ曲线图表

如上图6.1所示,用于控制及显示当前通道EQ曲线,图表中的对应多段控点可用鼠标点击上下左右拖动 来调整EQ曲线。

7.5.4 EQ控件

如上图6.1所示,曲线图表下方**15 16 17**,显示出所有的EQ控件及其详细数值,可用于定位 控件的位置,结合下面的EQ参数调节项,可精准调节每个EQ的参数值。

7.5.5 EQ参数调节项

EQ 15	类型	频率(Hz)	Q值	增益(dB)
开启	PEQ 🔻	661	4.32	-11.1

如上图6.1所示, EQ控件下方是EQ参数调节项, 可精准控制EQ的开关、类型、频率、Q值、增益等参数。

如上图6.1所示,左右下角所示的高通或低通部分高低通的频率及类型。

7.5.7 EQ存档按钮

如上图6.1所示,点击EQ存档按钮时即会弹出下图6.2EQ存档

图6.2EQ存档

选择左边的档位列表对应的项,再点击右边功能按钮,即可实现均衡器设置参数的存档、调用、 删除、重命名功能。

7.7 自动混音

双击模块按钮中的 , 弹出下图8.1自动混音设置模块, 可控制自动混音功能生效时的输入 与输出通道的对应关系 (多对多关系)。

		自动	君音		X
In A 0.0 12 12 10 10 10 10 10 10 10 10 10 10	In C 0.0 12 10 12 10 12 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10	In E In F 0.0 0.0 12 50 0.0 PR 0.00 PR 0.00 PR 0.00	In G In G In H 0.0 12 12 10 12 10 12 10 12 10 12 10 10 12 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10		↓ <
In I 0.0 12 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10	In K 0.0 12 10 12 10 12 10 12 10 12 10 10 12 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10	In M 0.0 12 12 12 12 12 12 12 12 12 12	In O 10 0 12 12 12 12 12 12 12 12 12 10 0 0 0 0 0 0 0 0 0 0 0 0 0	斜率 1.00 斜率 1.00 ■ ■の成时间 5.00 m	4 * 5 * 6 * 7 * 8 *

图8.1自动混音设置模块

输入部分,如上图8.1,左侧部分为输入部分的自动混音设置模块,

■■ 为对应通道输入混音增益,可拖动滑块或顶部的数值框输入对应数值; 通道输入混音开关 ☑ 及静音开关 ☑ ,控制是否生效(红色为关闭,绿色为生效), PR值的控制,调节该通道的优先级,0-10级,10级最高优先级。

中间部分由上到下即为所有参数重置按钮、输入混音总增益、混音斜率、混音响应时间。

输出部分,最右上角为总输出开关,若要开启输出部分的混音功能,此开关必须为开启状态(红色为关闭,绿色为开启),下方即为各输出通道的开关。

7.8 矩阵混音

弹出下图9.1矩阵混音设置模块。

									矩阵混	音							
	In A	In B	In C	In D	In E	In F	In G	In H	In I	In J	In K	In L	In M	In N	In O	In P	
Out 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Out 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-12
Out 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Out 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Out 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Out 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-60
Out 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	重置
Out 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	清除
Out 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

图9.1矩阵混音设置模块

在上图中左侧对应输出通道,上侧对应输入通道,带数值的数值框为输入输出通道混音键,当混 音键为绿色(双击数值框可切换状态)时,此输入通道和输出通道信号实现混音功能。

上图右侧部分包含矩阵混音的增益、重置按钮、清除按钮,点击左侧的数值框,再拖动矩阵混音 增益的滑动块或在数值框中输入数值,即可调整此矩阵块中的增益值;点击重置按钮,则会将矩阵混音 功能重置到初始一对一状态;点击清除按钮,则会将矩阵混音功能全部清除,设备的输入与输出无对应 关系。

7.9 输出均衡器

弹出图6.1输入均衡器设置模块的模块界面,功能及操作方式与7.5

输入均衡器相同。

7.10 输出延时

弹出图7.1输入延时设置模块的模块界面,功能及操作方式与7.6输入延

时相同。

7.11 输出压缩器

12.1输出压缩器设置模块

7.12 输出限幅器

弹出下图13.1输出限幅器设置模块

图13.1输出限幅器设置模块

7.13 输出模块

图14.1输出设置模块

如上图,可控制对应输出通道的极性及静音设置

在图2.1 软件主页输入输出通道列表所示, 左侧部分为输入通道如下图15.1输入通道。

输入通道界面中由上到下内容包括:通道名称 In B 、输入模式 LINE、通道增益、功能按钮

其中通道名称、输入模式、通道分组情况都只能查看,无编辑功能。

通道增益功能中,可以看到输入通道信号的电平状态

功能按钮中,由上到下按钮为:静音**圆**、极性**围**、反馈抑制**国**、噪声门**凰**、均衡器旁通、延时**回**,静音按钮若为红色,则为静音状态外,其它按钮若为绿色,则为生效状态。

通道分组联调情况显示的是默认4个通道联调分组,当对应数字框底色变为黄色**22**,则表示此通道 已加入到第2组进行联调。

第 29 页 共 69 页

在输入和输出通道中间的按钮栏 直接对所有输入通道同时操作。

为对应所有输入输出通道该功能按钮的总开关,将会

7.15 输出通道

С

在图2.1 软件主页的输入输出通道列表所示,右侧部分为输入通道如下图16.1输出通道。

其中通道名称、数字输出状态、通道分组情况都只能查看,无编辑功能;若当前设备的对应通道有

第 30 页 共 69 页

通道增益功能中,可以看到输出通道信号的电平状态 **2** 。另外两部分(增益数值框、增益滑动块) 为调整此通道的增益值。

功能按钮中,由上到下按钮为:静音M 、均衡器旁通 、延时M 、压缩器M 、限幅器M 、极性M, 静音按钮若为红色,则为静音状态外,其它按钮若为绿色,则为生效状态。

通道分组联调情况显示的是默认4个通道联调分组,当对应数字框底色变为黄色**20**,则表示此通道 已加入到第2组进行联调。

7.16 通道联调

图17.1通道联调界面

如上图,从左至右三个列表分为通道列表、分组列表、参数列表:

通道列表已列出所有的可联调的通道,可选中对应的通道后点添加按钮 移动到分组列表中。 分组列表中已有4个分组,直接选中对应分组,通道列表若添加通道则会直接分到选中的组中, 第 31 页 共 69 页

若要移除可选中要移除的通道后点击添加按按钮下方的移除按钮 🏊 即可移除到通道列表中。

参数列表则是分组列表中分组联调时可联调的参数,打上勾后则表示相同分组中的几个通道调节 参数时,其它通道会同时做出相同的调节。

7.17 设备列表

在图2.1 软件主页的设备列表所示,如下图18.1设备列表。

1. Device1	🔹 🗘
	M.VOL 0.0
USB	Factory
2. Device2	🕪 ti 🗙
	M.VOL 0.0
USB	Factory

图18.1设备列表

上图中 <1>为连接上的设备编号; Device1 为设备名称; Factory 为工厂名称(用户不能修改); 若 连接方式是TCP, 连上后工厂名称左侧为空位则会显示此设备的网络IP地址; 若是USB方式, 则显示USB; 串口方式连接, 则显示具体使用的COM口;

1) 13 ● 由左到右分为静音按钮、状态刷新按钮、移除设备按钮,静音按钮可直接控制整台设

备的所有输入输出通道静音,状态按钮可即时刷新设备的状态,若设备在线,则最左侧。 色, **8**88 移除按钮可直接在软件中移除此设备。

若需要对不同设备进行调试,可单击选择目标设备,功能界面则会更新为该设备功能页面。

7.18 添加设备

点击图2.1 软件主体界面的菜单栏"文件"—"新增设备",即会弹出如下图19.1添加设备界面,选中需要添加的虚拟设备型号,即可加到设备列表中。注意:虚拟设备不会连接真实设备。

7.19 设备管理

点击图2.1 软件主体界面的菜单栏"设备"—"设备管理",即会弹出如下图20.1设备管理界面。

图20.1设备管理界面

如上图,在顶部的设备列表中可选择目标设备管理界面显示的设备信息内容,设备管理界面分为

第 33 页 共 69 页

四块以下:

软件信息:显示当前设备的上下位机版本号及日期信息。

设备信息:显示当前设备设备名称、设备分组、工厂名称信息,工厂名称若要显示,需要按下隐 藏快捷键CTRL+ALT+F12,其中"设备名称"及"工厂名称"可录入新名称后点击按钮进行保存操作。

设备IP信息:若当前设备是以网络的信息连接,此处即会显示设备的IP地址、网关、MAC地址, 其中IP及网关可录入新的信息并点击确定按钮进行保存并重启设备网络模块,新录入的网络信息将 会即时生效。

软件Logo:软件本身Logo

7.20 通道名称管理

	输入		输出
in 1	In A] Out 1	Out 1
in 2	In B	Out 2	Out 2
in 3	In C] Out 3	Out 3
in 4	In D] Out 4	Out 4
in 5	In E] Out 5	Out 5
in 6	In F] Out 6	Out 6
in 7	In G] Out 7	Out 7
in 8	In H] Out 8	Out 8
n 9	In I	Out 9	Out 9

点击图2.1 软件主体界面的菜单栏"设备"—"通道管理", 弹出如下图21.1通道名称管理界面。

图21.1通道名称管理

如上图,再对应的通道中录入通道的新名称后,点击确定按钮,即时保存并更新该通道的名称。 注意通道名称长度限制输入5个英文字母及数字。 点击图2.1 软件主体界面的菜单栏"设备"—"通道拷贝",弹出如下图22.1通道拷贝界面。

图22.1通道拷贝

如上图,通道拷贝是先选择一个源设备的通道参数,拷贝到其他目标设备的目标通道,输入通道 与输出通道不可相互拷贝。左边为对应的通道,右边为拷贝的参数。界面顶部的"输入""输出"按钮可切换 拷贝的通道类型。

7.22 存档

点击图2.1 软件主体界面的菜单栏"存档", 弹出如下图23.1存档界面。

图23.1存档界面

如上图,存档界面左边为档位,其中"0自动挡"为系统档位,无法直接使用;"1(默认)"为设备的 默认档,只可调用,不能删除和覆盖,调用后设备参数会全部恢复为出厂默认参数;其它档位可自由进 行保存,调用,删除等操作。

存档界面右边功能按钮如下:

保存:保存现有设备参数到对应选中的存档中。

调用:调取选中的存档到当前设备的参数中。

删除:删除选中的存档参数。

清除:清除所有非系统存档的存档参数记录。

设为开机档:将选中的档位设为设备下次开机时将自动调用该存档来进行工作的存档。

导入存档:导入电脑系统中的单个设备参数文件,直接覆盖现有的参数资料。

导出存档:将当前设备的参数另存到电脑系统中,生产单个设备参数存档文件

导入存档包:导入电脑系统中的多个存档的参数包

导出存档包:将设备存档中所有档位的参数导出到电脑系统中,生产多个存档的参数包文件。

点击图2.1 软件主体界面的菜单栏"系统"—"固件升级",即会弹出如下图24.1固件升级界面。

图24.1固件升级界面

当设备下位机系统有更新时,获取到升级文件后,可打开如上图的固件升级界面,在"升级文件" 栏选中对应的升级文件后,点击右上角的"开始升级",系统自动会将升级文件传输到下位机进行升级操 作,并在下方的进度框中显示操作日志。升级完成后,机器下位机会自动重启或者通过手动重启机器, 完成升级。

第8章 摄像跟踪

8.1 摄像机连接设置

设置设备波特率,选择连接--端口设置。

设备可以通过RS232或RS485控制,根据摄像机所需波特率设置相对的波特率。(设备与摄像机波

特率需要一致)

端口设置		
波特率(232)	9600 bps	•
(495)	0600 has	
<u>版(中35)</u>	9000 bps	APTE
确定	取	消

8.2 摄像机设置

8.2.1摄像机设置

第 38 页 共 69 页

存在摄像机上。

首先进行串口设置,串口有 2 个(232、485),与云台所连接的后背板端口对应;其次是摄像机地址 和协议类型,摄像机地址请参考摄像机实际地址,协议和摄像机型号相关;最后预置点编号是用户为摄 像机定义的标识,然后调节上、下、左、右、和焦距,光圈等参数 将定义摄像机的位置和设置;最后点击"保存"将参数保存到摄像机上,"清除"是将当前预制点的信息 删除,"调用"用于查看当前预置点所保存的摄像机位置。

注:一个摄像机地址可包含多个预置点,但一个预置点仅对应一个摄像机地址。摄像机设置和麦克设 置都有预置点、串口号,摄像机地址、协议几个参数,应用时需要考虑实际场合。

8.2.2摄像机跟踪

默认麦克: 指所有的麦克都没有输入时, 转动摄像机到默认 MIC 设置的位置或者发送默认麦克定义的 关联命令。

跟踪阈值:指检测到的输入信号必须大于等于跟踪阈值,系统自动启用跟踪参数。

语音间隙: 有效信号的最大可间断时间。如使用麦克风讲话,设置反应时间为 3 秒,讲话时中间停顿 3S 内仍视为该信号持续有效,超过 3S,则视为该信号无效。

轮换时间: 摄像机切换到某个有效位置需要的最短发言时间。如使用麦克风讲话时,讲话的时长必须大于"轮换时间",则视为该通道信号有效,然后摄像机会自动转到设定的位置。通常"轮换时间"要大于"轮换周期"。

轮换周期:发送摄像头切换命令或自定义命令的间隔时间,如为0表示不发送。

8.2.3麦克风跟踪设置

摄像机跟踪	启用	2	串口號	232	•
麦克风编号	1	•	摄像机地址	1	•
优先级	1	•	协议	PELCO-D	•
			预置点	1	

麦克风的编号:与设备的输入通道对应,即是该麦克所连接的通道号。(每个通道需要单独设置参数) 优先级:数越大,优先级别越高,当优先级相同时,按照触发优先顺序处理;如两个麦克同时讲话,摄 像机自动转动到优先级数大(即是优先级别高)的麦克对应的预置位或者发送优先级数大(即是优先级 别高)的麦克对应的命令;但如果两个麦克的优先级相同,则以先检查到的信号为准。

启用: 启用该通道的摄像跟踪。

应用:将当前的麦克风摄像跟踪参数保存到设备。(启用摄像机跟踪后必须要点应用参数才生效) 预置点、串口号,摄像机地址、协议和摄像机相关,必须和摄像机的实际连接对应。

第9章 GPIO及中控指令

GPIO说明

设备背后配置了8个GPIO口,如图所示。GPIO口下面的数字或字母就是GPIO口的名称指示,1-7 GPIO口有输入输出功能,GPIO 8只有输出功能。

注意:使用GPIO时必须断开软件连接才能使用

V: 表示5V, 是机器内部稳压输出DC 5V 600mA

第40页共69页

下降沿产生的方法,电路原理图如下图所示,+5V就用GPIO的V口输出的5V就可以。GPIO X代表想要操作的GPIO口,下面接了一个轻触开关,当按一下开关就产生一个下降沿。

上升沿产生的方法,电路原理图如下图所示,+5V就用GPIO的V口输出的5V就可以。GPIO X代表想要操作的GPIO口,中间接了一个轻触开关,当按一下开关就产生一个上升沿。

设备GPIO按照上述方法接好后还需要在PC上进行如下设置,在上位机连接设备,菜单上选择设备 ->GPIO开始进行设置。

1、如:选择GPIO方向为**输出**时,如下图设置,点击下方"应用"使之生效。当调用存档1时,用仪器 进行测试,可测得GPIO1口输出低电平,可通过更改输出电平类型、存档号,以获得同样效果。

	Ð
GPIO1 -	
輸出	
存档显示	
輸出低电平,无输出高电平 ▼]
1 000	
应用 关闭]
	GPIO1 • 輸出 • 存档显示 • 輸出低电平, 无輸出高电平 • 1 • 应用 关闭

2、选择GPIO方向为**输出**时,如下图设置,点击下方"应用"使之生效。当设备"输出通道 1"的电平值达到-20dB 时,GIPO 2 口输出低电平,可通过更改输出电平类型、通道号、电平阈值,以获得同样效果。

PIO2	•	
出	•	
平显示	•	
出低电平,无端	記高电平	•
i出		•
Contract in the second		•
0		
应用		关闭
	出 引 平 显示	 □ □

3、选择GPIO方向为输出时,如下图设置,点击下方"应用"使之生效。当设备"输入通道 3"设置为"静

第42页共69页

音"时,GPIO3口输出低电平,可通过更改输出电平类型、通道类型、通道号,以获得同样效果。

GPIO3 -	
輸出 ▼	
通道静音显示	
氟出低电平,无输出高电平	
输入	
3	•
应用	关闭
	 GPIO3 ▼ 輸出 ▼ 通道静音显示 ▼ 輸出低电平, 无输出高电平 輸入 3

4、选择GPIO方向为**输出**时,如下图设置,点击下方"应用"使之生效。当设备"系统"设置为"静音"时, GPIO 4口输出低电平,可通过更改输出电平类型,以获得同样效果。

PIO		
GPIO	GPIO4 -	
GPIO方向	輸出・	
类别	系統静音显示	
输出电平类型	輸出低电平,无輸出高电平	-
重置所有	应用	关闭

5、选择GPIO方向为**输入**时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开时,调用到"存档1",可通过更改输出触发类型,以获得同样效果。

第 43 页 共 69 页

GPIO	GPIO1	•
iPIO方向	輸入	•
类别	存档设置	•
触发类型	上升沿打开	•
存档号	1	•

6、选择GPIO方向为**输入**时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开时,输入通道3的信号路由到输出通道4,可通过更改输出触发类型,以获得同样效果。

GPIO	GPIO2		
GPIO方向	輸入	•	
类别	混音设置	•	
触发类型	【上升沿打开,下降	沿关闭	•
入通道号	3		•
出通道号	4		•
重置所有	应用		关闭

7、选择GPIO方向为**输入**时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开时, 输入通道 1 递减0.5dB,可通过更改通道类型、步进数值、影响效果,以获得同样效果。

第 44 页 共 69 页

GPIO		×
GPIO	GPIO1 -	
GPIO方向	\$\$\$\	
类别	音量设置 ▼	
触发类型	上升沿打开	•
通道类型	输入	•
通道号	1	•
步进	0.5	
影响效果	递减	-
重置所有	应用	关闭

8、选择GPIO方向为**输入**时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开时,输入通道1 静音,可通过更改触发类型、通道类型、通道号,以获得同样效果。

PIO		
GPIO	GPIO1 •	Agrico tank
GPIO方向	▲入 •	(Marcola al
类别	通道静音设置	- Arroter
触发类型	上升沿打开	•
通道类型	輸入	•
通道号	1	•
重置所有	应用	关闭

9、选择GPIO方向为输入时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开

第45页共69页

时,系统静音,可通过更改触发类型,以获得同样效果。

10		
GPIO	GPIO1 •	
GPIO方向	▲入 •	
类别	系统静音设置	
触发类型	上升沿打开	•
重置所有	应用	关闭

10、选择GPIO方向为**输入**时,如下图设置,点击下方"应用"使之生效。当GPIO1 口触发上升沿打开时,可通过232口发出指令。可通过更改指令内容,以获得同样效果。

GPIO		_	×
GPIO	GPIO1	•	
GPIO方向	榆入	•	
类别	串行指令设置	•	
触发类型	上升沿打开		•
CMD	FF AA BB CC		Aurits and a
重置所有	应用		关闭

第 46 页 共 69 页

中控协议

1、串口参数

波特率可设置,默认值为115200,(可通过上位机设置为2400,4800,9600,19200,38400,57600, 115200)

校验位 NONE

数据位 8

停止位 1

指令发送间隔 大于200ms,场景调用时,时间间隔需3s以上。

2 协议格式

2.1 指令发送:

1	2	3	4	5	6	7
	帧头		ID	读写位	功能码	
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x00 - 0xFF

(接上表格)

8	9	10	 11	12
数据长度	数据1	数据2	 数据n	帧尾
0x00 - 0x03	0x??	0x??	 0x??	OxEE

1-4位:通讯命令帧帧头,四字节。

5位: 设备ID, 默认为0xFF。

6位:读写位,0x36表示写入,0x63表示读取。

7位:功能码,参照功能说明

8位:数据长度,即从数据1到数据n的字节数量。一般长度在1到4

9-11位:数据,参照功能说明。

12位:通讯命令帧帧尾,一字节。

2.2 指令返回

2.2.1发送指令为写入指令(读写位0x36)时,机器返回

1	
应答位	

0x00/0x01

1: 0x00表示写入成功, 0x01表示写入失败。

2.2.2发送指令为读取指令(读写位0x63)时,且指令格式正确,机

器返回指令格式:

1	2	3	4	5	6	7
帧头		ID	读写位	功能码		
0xA5	0xC3	0x3C	0x5A	0x00 - 0xFF	0x63	0x00 - 0xFF

(接上表格)

8	9	10	 11	12
数据长度	数据1	数据2	 数据n	帧尾
0x00 - 0x03	0x??	0x??	 0x??	OxEE

1-4位:通讯命令帧帧头,四字节。

5位: 设备ID, 默认为0xFF。

6位:读写位,0x36表示写入,0x63表示读取。

7位:功能码,参照功能说明

8位:数据长度,即从数据1到数据n的字节数量。一般长度在1到4

9-11位:数据,参照功能说明。

12位:通讯命令帧帧尾,一字节。

如果指令格式错误,机器返回:

1
应答位
0x01

1: 0x01表示读取失败。

3 功能说明

3.1.场景 (存档) 调用

功能码: 0x02

1	2	3	4	5	6
	帧	头	ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x36

(接上表格)

7	8	9	10
功能码	数据长度	场景号	帧尾
0x02	0x01	0x01 - 0x1F	Oxee

读写位: 0x36。

场景号:取值范围为1到30 (0x01 - 0x1F)其中场景1为出厂默认设置。 示例:A5 C3 3C 5A FF 36 02 01 01 EE 表示调用场景1。 (示例中的指令为16进制数,均去除前缀"0x")。

指令返回:

1	
应答位	
0x00/0x01	

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.2.场景 (存档) 读取

功能码: 0x02

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格。。。)

7	8	8
功能码	数据长度	帧尾
0x02	0x00	OxEE

指令返回:

1	2	3	4	5	6
帧头				ID	读写位

第49页共69页

0xA5	0xC3	0x3C	0x5A	OxFF	0x63
------	------	------	------	------	------

(接上表格)

7	8	9	10
功能码	数据长度	场景号	帧尾
0x02	0x01	0x01 - 0x1E	OxEE

读写位: 0x63。

场景号:表示当前调用的场景号,取值范围为1到30 (0x01 - 0x1E)

示例:机器返回A5 C3 3C 5A FF 63 02 01 01 EE 表示当前调用场景号为1。

3.3.静音控制

功能码: 0x03

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x03

(接上表格)

8	9	10	11	12
数据长度	输入/输出	通道号	静音控制	帧尾
0x03	0x01/0x02	0x00 - 0x08	0x00/0x01	OxEE

读写位: 0x36。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1; 0x08表示通道8; 0x00表示通道1到通道8。

静音控制: 0x00表示取消静音, 0x01表示静音。

示例: A5 C3 3C 5A FF 36 03 03 01 01 01 EE 表示输入通道1静音。

指令返回:

1 应答位

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.3.1静音状态读取

功能码: 0x03

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x03

(接上表格)

8	9	10	11
数据长度	输入/输出	通道号	帧尾
0x02	0x01 - 0x02	0x01 - 0x08	Oxee

读写位: 0x63。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1; 0x08表示通道8。

指令返回:

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x03

(接上表格)

8	9	10	11	12
数据长度	输入/输出	通道号	静音控制	帧尾
0x03	0x01 - 0x02	0x01 - 0x08	0x00/0x01	OxEE

读写位: 0x63。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1; 0x08表示通道8。

静音控制: 0x00表示取消静音, 0x01表示静音。

示例:机器返回A5 C3 3C 5A FF 63 03 03 01 02 00 EE表示输入通道2当前状态为取消静音。

3.4输入输出音量增益设置

功能码: 0x04

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x04

8	9	10	11	12	13
数据长度	输入/输出	通道号	音量(低字节)	音量 (高字 节)	帧尾
0x04	0x01 - 0x02	0x01 - 0x08	0x00 - 0xFF	0x00 - 0xFF	OxEE

读写位: 0x36。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1,0x08表示通道8。

音量(低字节-高字节):高低字节组成16位有符号16进制数,单位为0.1dB,输入通道范围为-60.0dB到6.0dB,输出通道范围为-60.0dB到12.0dB。如:低字节0x01,高字节0x00组成0x0001,表示0.1dB。当设定值超过可调范围机器自动取极值。

示例: A5 C3 3C 5A FF 36 04 04 01 01 C8 00 EE 表示设置输入通道1的音量为20.0dB。

指令返回:

1 _____

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.5.输入输出音量增益读取

功能码: 0x04

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x04

(接上表格)

8	9	10	11
数据长度	输入/输出	通道号	帧尾
0x02	0x01 - 0x02	0x01 - 0x08	OxEE

读写位: 0x63。

输入/输出: 0x01表示输入, 0x02表示输出。

指令返回:

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x04

(接上表格)

8	9	10	11	12	13
数据长度	输入/输出	通道号	音量(低字节)	音量 (高字 节)	帧尾
0x04	0x01 - 0x02	0x01 - 0x08	0x00 - 0xFF	0x00 - 0xFF	OxEE

读写位: 0x63。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1,0x08表示通道8。

音量(低字节-高字节): 高低字节组成16位有符号16进制数, 单位为0.1dB。如: 低字节0x01, 高字节 0x00组成0x0001, 表示0.1dB。

示例:机器返回A5 C3 3C 5A FF 63 03 04 02 07 EC FF EE表示输出通道7的音量为-2.0dB。

3.6.音量增益递增递减

功能码: 0x05

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x05

(接上表格)

8	9	10	11	12	13
数据长度	输入/输出	通道号	加/减	音量增减值	帧尾
0x04	0x01 - 0x02	0x01 - 0x08	0x00/0x01	0x00 - 0xFF	OxEE

读写位: 0x36。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1,0x08表示通道8。

加/减: 0x00表示音量加, 0x01表示音量减。

音量递增(递减)值:音量增减设置范围为0到25.6dB,步进值为0.1dB,如0x0A表示1.0dB,当音量增加或减少后,音量值超出可调范围时,取极值。

示例: A5 C3 3C 5A FF 36 04 04 01 01 00 19 EE 表示设置输入通道1音量增加2.5dB。

指令返回:

1

应答位

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.7.Line/Mic切换设置

功能码: 0x06

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x06

(接上表格)

8	9	10	11	12
数据长度	通道号	Line/Mic	灵敏度	帧尾
0x03	0x01 - 0x08	0x01/0x00	0x00 - 0x07	OxEE

读写位: 0x36。

通道号: 0x01表示通道1,0x08表示通道8。

Line/Mic: 0x01表示Line in输入, 0x00表示Mic输入。

灵敏度: 0x00表示0dB, 0x01表示5dB, 0x02表示10dB, 0x03表示15dB, 0x04表示20dB, 0x05表示25dB, 0x06表示30dB, 0x07表示35dB,

示例: A5 C3 3C 5A FF 36 06 02 01 01 00 EE 表示输入通道1切换Line输入。

指令返回:

应答位

1

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.7.1.Line/Mic状态读取

功能码: 0x06

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10
功能码	数据长度	通道号	帧尾
0x06	0x0	0x01 - 0x08	Oxee

读写位: 0x63。

输入/输出: 0x01表示输入, 0x02表示输出。

通道号: 0x01表示通道1,0x08表示通道8。

指令返回:

1	2	3	4	5	6
帧头				ID	读写位
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10	11
功能码	数据长度	通道号	Line/Mic	帧尾
0x06	0x02	0x01 - 0x08	0x01/0x00	OxEE

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

Line/Mic: 0x01表示Line in输入, 0x00表示Mic输入。

示例:机器返回A5 C3 3C 5A FF 63 06 02 01 00 EE 表示输入通道1为Mic输入。

3.8.幻象电源设置

功能码: 0x07

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x36

第 55 页 共 69 页

(接上表格)、

7	8	9	10	11
功能码	数据长度	通道号	幻象电源开关	帧尾
0x07	0x02	0x01 - 0x08	0x00/0x01	Oxee

读写位: 0x36。

通道号: 0x01表示通道1,0x08表示通道8。

幻象电源开关: 0x01表示幻象电源打开,0x01表示幻象电源关闭。

注意:当Line/Mic输入为Line状态下,幻象电源设置无效。

示例: A5 C3 3C 5A FF 36 07 02 08 01 EE 表示输入通道8的幻象电源打开。 指令返回:

1	
应答位	
0 00 10	~

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.8.1幻象电源状态读取

功能码: 0x07

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10
功能码	数据长度	通道号	帧尾
0x07	0x01	0x01 - 0x08	OxEE

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

指令返回:

1	2	3	4	5	6
帧头				ID	读写位
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10	11
功能码	数据长度	通道号	幻象电源开关	帧尾
0x07	0x02	0x01 - 0x08	0x00/0x01	Oxee

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

幻象电源开关: 0x01表示幻象电源打开,0x01表示幻象电源关闭。

示例:机器返回A5 C3 3C 5A FF 63 07 02 05 00 EE 表示输入通道5幻象电源关闭。

3.9.反馈抑制等级设置

功能码: 0x08

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x36

(接上表格)

7	8	9	10	11
功能码	数据长度	通道号	反馈抑制等级	帧尾
0x08	0x02	0x01 - 0x08	0x00/0x01/0x02	Oxee

读写位: 0x36。

通道号: 0x01表示通道1,0x08表示通道8。

反馈抑制等级: 0x00表示反馈抑制关闭,0x01表示反馈抑制等级1,0x02表示反馈抑制等级2 注意: 当Line/Mic输入为Line,反馈抑制等级设置无效。

示例: A5 C3 3C 5A FF 36 08 02 01 02 EE 表示设置输入通道1反馈抑制等级为等级2。

指令返回:

1 应答位

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

第 57 页 共 69 页

3.9.1.反馈抑制状态读取

功能码: 0x08

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10
功能码	数据长度	通道号	帧尾
0x08	0x01	0x01 - 0x08	Oxee

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

指令返回:

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10	11
功能码	数据长度	通道号	反馈抑制等级	帧尾
0x08	0x02	0x01 - 0x08	0x00/0x01/0x02	Oxee

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

反馈抑制等级: 0x00表示反馈抑制关闭,0x01表示反馈抑制等级1,0x02表示反馈抑制等级2。 示例: 机器返回A5 C3 3C 5A FF 63 08 02 02 01 EE 表示输入通道2反馈抑制等级为等级1。

3.10.矩阵混音设置

功能码: 0x09

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x36	0x09

(接上表格)

8	9	10	11	12
数据长度	输入通道号	输出通道号	路由接通/断开	帧尾
0x03	0x01 - 0x08	0x01 - 0x08	0x01/0x00	OxEE

读写位: 0x36。

输入通道号: 0x01表示输入通道1,0x08表示输入通道8。

输出通道号: 0x01表示输出通道1,0x08表示输出通道8。

路由接通/断开: 0x01表示路由接通,0x00表示路由断开。

注意:当输入通道已通过自动混音连接到相应输出通道时,设置此输入输出通道连通无效。示例:A5C3 3C5AFF360903020101EE表示设置输入通道2-输出通道1路由接通。

指令返回:

1
应答位
0 00/0 01

0x00/0x01

应答位: 0x00表示写入成功, 1: 0x01表示写入失败。

3.10.1.矩阵混音状态读取

功能码: 0x09

1	2	3	4	5	6	7
帧头			ID	读写位	功能码	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x09

(接上表格)

8	9	10	11
数据长度	输入通道号	输出通道号	帧尾
0x02	0x01 - 0x08	0x01 - 0x08	OxEE

读写位: 0x63。

通道号: 0x01表示通道1,0x08表示通道8。

指令返回:

1	2	3	4	5	6	7
帧头				ID	读写位	功能码
0xA5	0xC3	0x3C	0x5A	OxFF	0x63	0x09

8	9	10	11	12
数据长度	输入通道号	输出通道号	路由接通/断开	帧尾
0x03	0x01 - 0x08	0x01 - 0x08	0x01/0x00	OxEE

读写位: 0x63。

输入通道号: 0x01表示输入通道1,0x08表示输入通道8。

输出通道号: 0x01表示输出通道1,0x08表示输出通道8。

路由接通/断开: 0x01表示路由接通,0x00表示路由断开。

示例:机器返回A5 C3 3C 5A FF 63 09 03 01 05 00 EE 表示输入通道1-输出通道5路由断开。

3.11.摄像头位置返回

当机器通过上位机设定摄像头跟踪功能时,当输入通道检测到声音输入并达到设定要求,机器将通过串口返回摄像头应该设置(转向)的位置。

功能码: 0x0A

1	2	3	4	5	6
帧头			ID	读写位	
0xA5	0xC3	0x3C	0x5A	OxFF	0x63

(接上表格)

7	8	9	10
功能码	数据长度	摄像头位置	帧尾
0x0A	0x01	0x00 - 0x08	Oxee

读写位: 0x63。

摄像头位置: 0x00表示默认位置,0x01表示输入通道1对应的位置, 0x08表示输入通道8对应的位置。 示例: A5 C3 3C 5A FF 63 0A 01 08 EE 表示摄像头应设置(转向)到输入通道8对应的位置。

附件 常用的中控协议指令

1场景(存档)管理

调用场景1 (出厂默认场景)	A5 C3 3C 5A FF 36 02 01 01 EE
调用场景2	A5 C3 3C 5A FF 36 02 01 02 EE
调用场景3	A5 C3 3C 5A FF 36 02 01 03 EE
调用场景4	A5 C3 3C 5A FF 36 02 01 04 EE
调用场景5	A5 C3 3C 5A FF 36 02 01 05 EE
调用场景6	A5 C3 3C 5A FF 36 02 01 06 EE
调用场景7	A5 C3 3C 5A FF 36 02 01 07 EE
调用场景8	A5 C3 3C 5A FF 36 02 01 08 EE
调用场景9	A5 C3 3C 5A FF 36 02 01 09 EE
调用场景10	A5 C3 3C 5A FF 36 02 01 0A EE
调用场景11	A5 C3 3C 5A FF 36 02 01 0B EE
调用场景12	A5 C3 3C 5A FF 36 02 01 0C EE
调用场景13	A5 C3 3C 5A FF 36 02 01 0D EE
调用场景14	A5 C3 3C 5A FF 36 02 01 0E EE
调用场景15	A5 C3 3C 5A FF 36 02 01 0F EE
调用场景16	A5 C3 3C 5A FF 36 02 01 10 EE
调用场景17	A5 C3 3C 5A FF 36 02 01 11 EE
调用场景18	A5 C3 3C 5A FF 36 02 01 12 EE
调用场景19	A5 C3 3C 5A FF 36 02 01 13 EE
调用场景20	A5 C3 3C 5A FF 36 02 01 14 EE
调用场景21	A5 C3 3C 5A FF 36 02 01 15 EE
调用场景22	A5 C3 3C 5A FF 36 02 01 16 EE
调用场景23	A5 C3 3C 5A FF 36 02 01 17 EE
调用场景24	A5 C3 3C 5A FF 36 02 01 18 EE
调用场景25	A5 C3 3C 5A FF 36 02 01 19 EE
调用场景26	A5 C3 3C 5A FF 36 02 01 1A EE
调用场景27	A5 C3 3C 5A FF 36 02 01 1B EE
调用场景28	A5 C3 3C 5A FF 36 02 01 1C EE
调用场景29	A5 C3 3C 5A FF 36 02 01 1D EE
调用场景30	A5 C3 3C 5A FF 36 02 01 1E EE

1.1 场景调用

第61页共69页

1.2 场景 (存档) 读取

2 静音控制

2.1 输入输出通道静音

输入通道1静音	A5 C3 3C 5A FF 36 03 03 01 01 01 EE
输入通道2静音	A5 C3 3C 5A FF 36 03 03 01 02 01 EE
输入通道3静音	A5 C3 3C 5A FF 36 03 03 01 03 01 EE
输入通道4静音	A5 C3 3C 5A FF 36 03 03 01 04 01 EE
输入通道5静音	A5 C3 3C 5A FF 36 03 03 01 05 01 EE
输入通道6静音	A5 C3 3C 5A FF 36 03 03 01 06 01 EE
输入通道7静音	A5 C3 3C 5A FF 36 03 03 01 07 01 EE
输入通道8静音	A5 C3 3C 5A FF 36 03 03 01 08 01 EE
输入通道1取消静音	A5 C3 3C 5A FF 36 03 03 01 01 00 EE
输入通道2取消静音	A5 C3 3C 5A FF 36 03 03 01 02 00 EE
输入通道3取消静音	A5 C3 3C 5A FF 36 03 03 01 03 00 EE
输入通道4取消静音	A5 C3 3C 5A FF 36 03 03 01 04 00 EE
输入通道5取消静音	A5 C3 3C 5A FF 36 03 03 01 05 00 EE
输入通道6取消静音	A5 C3 3C 5A FF 36 03 03 01 06 00 EE
输入通道7取消静音	A5 C3 3C 5A FF 36 03 03 01 07 00 EE
输入通道8取消静音	A5 C3 3C 5A FF 36 03 03 01 08 00 EE
输出总静音	A5 C3 3C 5A FF 36 03 03 02 00 01 EE
输出总取消静音	A5 C3 3C 5A FF 36 03 03 02 00 00 EE
输出通道3静音	A5 C3 3C 5A FF 36 03 03 02 03 01 EE
输出通道4静音	A5 C3 3C 5A FF 36 03 03 02 04 01 EE
输出通道5静音	A5 C3 3C 5A FF 36 03 03 02 05 01 EE
输出通道6静音	A5 C3 3C 5A FF 36 03 03 02 06 01 EE
输出通道7静音	A5 C3 3C 5A FF 36 03 03 02 07 01 EE

第62页共69页

输出通道8静音	A5 C3 3C 5A FF 36 03 03 02 08 01 EE
输出通道1取消静音	A5 C3 3C 5A FF 36 03 03 02 01 00 EE
输出通道2取消静音	A5 C3 3C 5A FF 36 03 03 02 02 00 EE
输出通道3取消静音	A5 C3 3C 5A FF 36 03 03 02 03 00 EE
输出通道4取消静音	A5 C3 3C 5A FF 36 03 03 02 04 00 EE
输出通道5取消静音	A5 C3 3C 5A FF 36 03 03 02 05 00 EE
输出通道6取消静音	A5 C3 3C 5A FF 36 03 03 02 06 00 EE
输出通道7取消静音	A5 C3 3C 5A FF 36 03 03 02 07 00 EE
输出通道8取消静音	A5 C3 3C 5A FF 36 03 03 02 08 00 EE

2.2输入输出通道 静音状态读取

读取输入通道1静音状态	A5 C3 3C 5A FF 63 03 02 01 01 EE

3 输入输出通道音量增益设置

输入通道1音量增益设置为-20.0dB	A5 C3 3C 5A FF 36 04 04 01 05 69 00 EE
输出通道8音量增益设置为6.0dB	A5 C3 3C 5A FF 36 04 04 02 08 3C 00 EE

3.1 输入输出通道音量增益音量读取

读取输入通道1音量增益	A5 C3 3C 5A FF 63 04 02 01 01 EE
-------------	----------------------------------

4 输入输出音量增益递增递减

输入通道1音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 01 00 0A EE
输入通道2音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 02 00 0A EE
输入通道3音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 03 00 0A EE
输入通道4音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 04 00 0A EE
输入通道5音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 05 00 0A EE
输入通道6音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 06 00 0A EE

第63页共69页

输入通道7音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 07 00 0A EE
输入通道8音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 01 08 00 0A EE
输入通道1音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 01 01 0A EE
输入通道2音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 02 01 0A EE
输入通道3音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 03 01 0A EE
输入通道4音量减增益少1.0dB	A5 C3 3C 5A FF 36 05 04 01 04 01 0A EE
输入通道5音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 05 01 0A EE
输入通道6音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 06 01 0A EE
输入通道7音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 07 01 0A EE
输入通道8音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 01 08 01 0A EE
输出通道1音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 01 00 0A EE
输出通道2音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 02 00 0A EE
输出通道3音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 03 00 0A EE
输出通道4音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 04 00 0A EE
输出通道5音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 05 00 0A EE
输出通道6音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 06 00 0A EE
输出通道7音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 07 00 0A EE
输出通道8音量增益增加1.0dB	A5 C3 3C 5A FF 36 05 04 00 08 00 0A EE
输出通道1音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 01 01 0A EE
输出通道2音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 02 01 0A EE
输出通道3音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 03 01 0A EE
输出通道4音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 04 01 0A EE
输出通道5音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 05 01 0A EE
输出通道6音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 06 01 0A EE
输出通道7音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 07 01 0A EE
输出通道8音量增益减少1.0dB	A5 C3 3C 5A FF 36 05 04 00 08 01 0A EE

5 Line/Mic切换设置

输入通道1设置Line输入	A5 C3 3C 5A FF 36 06 02 01 01 EE
输入通道2设置Line输入	A5 C3 3C 5A FF 36 06 02 02 01 EE
输入通道3设置Line输入	A5 C3 3C 5A FF 36 06 02 03 01 EE
输入通道4设置Line输入	A5 C3 3C 5A FF 36 06 02 04 01 EE
输入通道5设置Line输入	A5 C3 3C 5A FF 36 06 02 05 01 EE
输入通道6设置Line输入	A5 C3 3C 5A FF 36 06 02 06 01 EE
输入通道7设置Line输入	A5 C3 3C 5A FF 36 06 02 07 01 EE
输入通道8设置Line输入	A5 C3 3C 5A FF 36 06 02 08 01 EE
输入通道1设置Mic输入	A5 C3 3C 5A FF 36 06 02 01 00 EE
输入通道2设置Mic输入	A5 C3 3C 5A FF 36 06 02 02 00 EE
输入通道3设置Mic输入	A5 C3 3C 5A FF 36 06 02 03 00 EE
输入通道4设置Mic输入	A5 C3 3C 5A FF 36 06 02 04 00 EE
输入通道5设置Mic输入	A5 C3 3C 5A FF 36 06 02 05 00 EE
输入通道6设置Mic输入	A5 C3 3C 5A FF 36 06 02 06 00 EE
输入通道7设置Mic输入	A5 C3 3C 5A FF 36 06 02 07 00 EE
输入通道8设置Mic输入	A5 C3 3C 5A FF 36 06 02 08 00 EE

5.1 Line/Mic状态读取

读取输入通道1的Line/Mic状态 A5 C3 3C 5A FF 63 06 01 01 EE

6 幻象电源设置

设置输入通道1幻象电源打开	A5 C3 3C 5A FF 36 07 02 01 01 EE
设置输入通道2幻象电源打开	A5 C3 3C 5A FF 36 07 02 02 01 EE
设置输入通道3幻象电源打开	A5 C3 3C 5A FF 36 07 02 03 01 EE
设置输入通道4幻象电源打开	A5 C3 3C 5A FF 36 07 02 04 01 EE
设置输入通道5幻象电源打开	A5 C3 3C 5A FF 36 07 02 05 01 EE
设置输入通道6幻象电源打开	A5 C3 3C 5A FF 36 07 02 06 01 EE
设置输入通道7幻象电源打开	A5 C3 3C 5A FF 36 07 02 07 01 EE
设置输入通道8幻象电源打开	A5 C3 3C 5A FF 36 07 02 08 01 EE

第65页共69页

设置输入通道1幻象电源关闭	A5 C3 3C 5A FF 36 07 02 01 00 EE
设置输入通道2幻象电源关闭	A5 C3 3C 5A FF 36 07 02 02 00 EE
设置输入通道3幻象电源关闭	A5 C3 3C 5A FF 36 07 02 03 00 EE
设置输入通道4幻象电源关闭	A5 C3 3C 5A FF 36 07 02 04 00 EE
设置输入通道5幻象电源关闭	A5 C3 3C 5A FF 36 07 02 05 00 EE
设置输入通道6幻象电源关闭	A5 C3 3C 5A FF 36 07 02 06 00 EE
设置输入通道7幻象电源关闭	A5 C3 3C 5A FF 36 07 02 07 00 EE
设置输入通道8幻象电源关闭	A5 C3 3C 5A FF 36 07 02 08 00 EE

٦

6.1 幻象电源状态读取

读取输入通道1的幻象电源状态	A5 C3 3C 5A FF 63 07 01 01 EE
----------------	-------------------------------

7 反馈抑制设置

关闭输入通道1的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 01 00 EE
关闭输入通道2的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 02 00 EE
关闭输入通道3的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 03 00 EE
关闭输入通道4的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 04 00 EE
关闭输入通道5的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 05 00 EE
关闭输入通道6的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 06 00 EE
关闭输入通道7的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 07 00 EE
关闭输入通道8的反馈抑制状态	A5 C3 3C 5A FF 36 08 02 08 00 EE
设置输入通道1的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE
设置输入通道1的反馈抑制等级1 设置输入通道2的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE A5 C3 3C 5A FF 36 08 02 02 01 EE
设置输入通道1的反馈抑制等级1 设置输入通道2的反馈抑制等级1 设置输入通道3的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE A5 C3 3C 5A FF 36 08 02 02 01 EE A5 C3 3C 5A FF 36 08 02 03 01 EE
设置输入通道1的反馈抑制等级1 设置输入通道2的反馈抑制等级1 设置输入通道3的反馈抑制等级1 设置输入通道4的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE A5 C3 3C 5A FF 36 08 02 02 01 EE A5 C3 3C 5A FF 36 08 02 03 01 EE A5 C3 3C 5A FF 36 08 02 04 01 EE
设置输入通道1的反馈抑制等级1 设置输入通道2的反馈抑制等级1 设置输入通道3的反馈抑制等级1 设置输入通道4的反馈抑制等级1 设置输入通道5的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE A5 C3 3C 5A FF 36 08 02 02 01 EE A5 C3 3C 5A FF 36 08 02 03 01 EE A5 C3 3C 5A FF 36 08 02 04 01 EE A5 C3 3C 5A FF 36 08 02 05 01 EE
设置输入通道1的反馈抑制等级1 设置输入通道2的反馈抑制等级1 设置输入通道3的反馈抑制等级1 设置输入通道4的反馈抑制等级1 设置输入通道5的反馈抑制等级1 设置输入通道6的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 01 EE A5 C3 3C 5A FF 36 08 02 02 01 EE A5 C3 3C 5A FF 36 08 02 03 01 EE A5 C3 3C 5A FF 36 08 02 04 01 EE A5 C3 3C 5A FF 36 08 02 05 01 EE A5 C3 3C 5A FF 36 08 02 06 01 EE

第66页共69页

设置输入通道8的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 08 01 EE
设置输入通道1的反馈抑制等级1	A5 C3 3C 5A FF 36 08 02 01 02 EE
设置输入通道2的反馈抑制等级2	A5 C3 3C 5A FF 36 08 02 02 02 EE
设置输入通道3的反馈抑制等级3	A5 C3 3C 5A FF 36 08 02 03 02 EE
设置输入通道4的反馈抑制等级4	A5 C3 3C 5A FF 36 08 02 04 02 EE
设置输入通道5的反馈抑制等级5	A5 C3 3C 5A FF 36 08 02 05 02 EE
设置输入通道6的反馈抑制等级6	A5 C3 3C 5A FF 36 08 02 06 02 EE
设置输入通道7的反馈抑制等级7	A5 C3 3C 5A FF 36 08 02 07 02 EE
设置输入通道8的反馈抑制等级8	A5 C3 3C 5A FF 36 08 02 08 02 EE

7.1 反馈抑制状态读取

8 矩阵混音设置

设置输入通道1-输出通道1接通	A5 C3 3C 5A FF 36 09 03 01 01 01 EE
设置输入通道1-输出通道2接通	A5 C3 3C 5A FF 36 09 03 01 02 01 EE
设置输入通道1-输出通道3接通	A5 C3 3C 5A FF 36 09 03 01 03 01 EE
设置输入通道1-输出通道4接通	A5 C3 3C 5A FF 36 09 03 01 04 01 EE
设置输入通道1-输出通道5接通	A5 C3 3C 5A FF 36 09 03 01 05 01 EE
设置输入通道1-输出通道6接通	A5 C3 3C 5A FF 36 09 03 01 06 01 EE
设置输入通道1-输出通道7接通	A5 C3 3C 5A FF 36 09 03 01 07 01 EE
设置输入通道1-输出通道8接通	A5 C3 3C 5A FF 36 09 03 01 08 01 EE
设置输入通道1-输出通道1断开	A5 C3 3C 5A FF 36 09 03 01 01 00 EE
设置输入通道1-输出通道2断开	A5 C3 3C 5A FF 36 09 03 01 02 00 EE
设置输入通道1-输出通道3断开	A5 C3 3C 5A FF 36 09 03 01 03 00 EE
设置输入通道1-输出通道4断开	A5 C3 3C 5A FF 36 09 03 01 04 00 EE
设置输入通道1-输出通道5断开	A5 C3 3C 5A FF 36 09 03 01 05 00 EE
设置输入通道1-输出通道6断开	A5 C3 3C 5A FF 36 09 03 01 06 00 EE

第 67 页 共 69 页

设置输入通道1-输出通道7断开	A5 C3 3C 5A FF 36 09 03 01 07 00 EE
设置输入通道1-输出通道8断开	A5 C3 3C 5A FF 36 09 03 01 08 00 EE

8.1 矩阵混音状态读取

读取输入通道1-输出通道1的连通状态 | A5 C3 3C 5A FF 63 09 02 01 01 EE

9 摄像头位置返回

摄像头应转回默认位置	A5 C3 3C 5A FF 63 0A 01 00 EE
摄像头应转到通道1对应的位置	A5 C3 3C 5A FF 63 0A 01 01 EE
摄像头应转到通道2对应的位置	A5 C3 3C 5A FF 63 0A 01 02 EE
摄像头应转到通道3对应的位置	A5 C3 3C 5A FF 63 0A 01 03 EE
摄像头应转到通道4对应的位置	A5 C3 3C 5A FF 63 0A 01 04 EE
摄像头应转到通道5对应的位置	A5 C3 3C 5A FF 63 0A 01 05 EE
摄像头应转到通道6对应的位置	A5 C3 3C 5A FF 63 0A 01 06 EE
摄像头应转到通道7对应的位置	A5 C3 3C 5A FF 63 0A 01 07 EE
摄像头应转到通道8对应的位置	A5 C3 3C 5A FF 63 0A 01 08 EE

第10章 故障排除

如设备开启后无法正常工作,请按如下操作排除故障:

- 1、检查是否开启了静音,连接Mconsole软件进行查看;
- 2、检查设备的矩阵路由配置是否正确,连接Mconsole软件进行查看;
- 3、Dante系列连接DanteController检查采样率设置是否在48K;

第11章 Dante Controller 操作

① 连接DANTE有两种方法,第一种是接入到已有其他Dante设备的局域网中,第二种是通过虚拟声卡 (Dante Virtual Soundcard,简称DVS)进行连接,两种连接方式都需要经过交换机或路由 器有线连接。

②无论使用哪种连接方式,均需要通过官方提供的Dante Controller电脑软件进行路由配置。Dante Controller软件可在官网免费下载www.audinate.com。

③ DVS是付费的虚拟声卡,可自行上官网采购www.audinate.com

